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Abstract- Denoising of natural images is the fundamental and challenging research problem of Image 

processing. This problem appears to be very simple however that is not so when considered under practical 

situations, where the type of noise, amount of noise and the type of images all are variable parameters, and 

the single algorithm or approach can never be sufficient to achieve satisfactory results. Single-sensor digital 

color cameras use a process  called color  demosaicking to produce full color images from the data captured 

by a color filter array (CFA).Normally the quality of images are degraded because of sensor of camera. In 

this paper we have developed PCA, FASTICA based algorithm with K-means clustering and compared the 

both .Performance evaluation is done with PSNR, WPSNR, SSIM, Correlation Coefficient. 

 

Keywords--PCA, ICA, Kmean, CFA 
 I.    INTRODUCTION 

 
Digital images play an important role both in daily life applications such as satellite television, magnetic resonance 
imaging, computer tomography as well as in areas of research and technology such as geographical information 
systems and astronomy. Data sets collected by image sensors are generally contaminated by noise. Imperfect 
instruments, problems with the data acquisition process, and interfering natural phenomena can all degrade the data 
of interest. Furthermore, noise can be introduced by transmission errors and compression. Thus, denoising is often a 
necessary and the first step to be taken before the images data is analyzed. It is necessary to apply an efficient 
denoising technique to compensate for such data corruption. Image denoising still remains a challenge for 
researchers because noise removal introduces artifacts and causes blurring of the images. This paper describes 
different methodologies for noise reduction (or denoising) giving an insight as to which algorithm should be used to 
find the most reliable estimate of the original image data given its degraded version. Noise modeling in images is 
greatly affected by capturing instruments, data transmission media, image quantization and discrete sources of 
radiation. Most existing digital color cameras use a single sensor with a color filter array (CFA) [1] to capture visual 
scenes in color. Since each sensor cell can record only one color value, the other two missing color components at 
each position need to be interpolated from the available CFA sensor readings to reconstruct the full-color image. 
The color interpolation process is usually called color demosaicking (CDM).Many CDM algorithms [2]-[5] 
proposed in the past are based on the unrealistic assumption of noise-free CFA data. The presence of noise in CFA 
data not only deteriorates the visual quality of captured images, but also often causes serious demosaicking artifacts 
which can be extremely difficult to remove using a subsequent denoising process. Many advanced denoising 
algorithms which are designed for monochromatic (or full color) images, are not directly applicable to CFA images 
due to the underlying mosaic structure of CFAs. Our task is to attempt to reduce the noise inherent in the image. A 
critical concept in signal processing is signal representation the same image is representation in many ways, and thus 
an important problem is to determine which one is best to be able to effectively denoise signal. The traditional 
solution is the Fourier representation, but more modern is nonlinear methods employ the wavelet transforms. The 
common ground of Fourier and wavelet method is that they use signal representation which are pre-determined i.e. 
they cannot be directly adapted to the signal structure. 
  
The goal is to introduce a nonlinear de-noising method which adapts the representation used to the statistical 
structure of data to be de-noised. We concentrate on linear data adaptive transform such as the independent 
component analysis (ICA) and principle component analysis (PCA).  
 

 
II. ADAPTIVE LINEAR TRANSFORM 



 

 

 

In general non- linear transformation function is 
                                                                                       S=f(x)                                                                         (1) 

Where f is vector valued function of a vector argument and x, s denotes random vector. The mapping f  is a fixed  
function but often we would like to adapt it to structure of x so that we may capture the information in inherent in it.  
Such type of transform makes it difficult to adapt it to the data. 
So the simplest solution is to restrict f to be linear. Linearity means it should satisfy the following two constraints: 

                                            f (x1+x2) = f(x1) + f(x2)                                                              (2) 

 

                                                f (αx1)=α . f (x1)                                                                    (3) 

Where α is any scalar, and x1,x2 are arbitrary vectors. Then 
 

                                         s= W. x                                                                                 (4) 

Since any linear function can be written as a matrix multiplication, and multiplication by any matrix satisfies the 
linearity constraints. Thus if W is n by m matrix the transform has been parameterized by nm parameters which can 
subsequently be adapted to the statistics of x. so that s forms a representation with relevant properties. Linear 
transforms have many advantages over nonlinear ones. Most important of which is mathematical simplicity with 
which linear transforms can be analyzed. 
 

                                         III. PRINCIPAL COMPONENT ANALYSIS 
 

PCA is a classical de-correlation technique which has been widely used for dimensionality reduction with direct 
applications in pattern recognition, data compression and noise reduction. Denote by x=[x1 x2…..xm]T    an m-
component  vector variable and denote by 

                                                                       X=[  
 𝒙𝟏𝟏    𝒙𝟏𝟐 … … . 𝒙𝟏𝒏𝒙𝟐𝟏    𝒙𝟐𝟐 … … . 𝒙𝟐𝒏⋮𝒙𝒎𝟏     𝒙𝒎𝟐 …… . 𝒙𝒎𝒏 ]  

 
                                                                        (5) 

 
 
The sample matrix of x, where xi

j ,j=1,2,……,n, is the discrete sample of variable xi ,i=1,2,…..,m. The ith row of 
sample matrix X, denoted by Xi= [xi

1   xi
2   …. xi

n], is the sample vector of xi. The mean value of xi can be estimated 
as  𝝁𝒊=1/n ∑ 𝑿𝒊𝒏𝒋=𝟏 (j)     

                                                                                                                                                                               (6) 

and then the sample vector Xi is centralized as                                                    
 �̅�𝒊= 𝑿𝒊- 𝝁𝒊 =[𝒙𝒊𝟏    𝒙𝒊𝟐 …… . 𝒙𝒊𝒏] 

                                                                                                                                                                              (7) 

Where x̅ij=xij-μij 
 

Accordingly, the centralized matrix of X is �̅�= [�̅�𝟏𝑻    �̅�𝟐𝑻 … … . �̅�𝒎𝑻 ]T
 

                                                                                                                                                                              (8)                            

Finally, the co-variance matrix of the centralized dataset is calculated as  

Ω = 1/n �̅��̅�𝑻 

                                                                                                                                                                              (9) 

The goal of PCA is to find an orthonormal transformation matrix P to de-correlate          X̅, i.e. Y̅=PX̅ 

So that the co-variance matrix of �̅� is diagonal. Since the co-variance matrix Ω is symmetrical, it can be written as: 
                                                                                                               Ω = ΦΦT                               

                    (10) 

Where Φ= [Φ1, Φ2…..Φm] is the m×m orthonormal eigenvector matrix and Λ=diag { λ1 λ2…..λm }is the diagonal 
eigenvalue matrix with λ1 ≥λ2≥…..≥λm. The terms Φ1 Φ2…..Φm and λ1 λ2…..λm are the eigenvectors and eigenvalues 
of Ω. By setting 

                                                                                 P = ΦΦT
                                                                         (11) �̅� can be decor related, i.e. �̅�=P�̅� and Λ = (1/n) �̅��̅�𝑇 



 

 

 

An important property of PCA is that it fully de-correlates the original dataset�̅�. Generally speaking, the energy of a 
signal will concentrate on a small subset of the PCA transformed dataset, while the energy of noise will evenly 
spread over the whole dataset. Therefore, the signal and noise can be better distinguished in the PCA domain[1]. 
 
 

IV. INDEPENDENT COMPONENT ANALYSIS 
 
To rigorously define ICA (Jutten and Hérault, 1991; Comon, 1994), we can use a statistical “latent variables” model. 
Assume that we observe n linear mixtures x1, ...,xn of n independent components 

                                                   𝒙𝒋= 𝒂𝒋𝟏𝒔𝒋+𝒂𝒋𝟐𝒔𝒋+…..𝒂𝒋𝒏𝒔𝒏 For all j                                                                     (12) 

                                                                                                                            

 We have now dropped the time index t; in the ICA model, we assume that each mixture xj as well as each 
independent component sk is a random variable, instead of a proper time signal. The observed values xj(t), e.g., the 
microphone signals in the cocktail party problem, are then a sample of this random variable. Without loss of 
generality, we can assume that both the mixture variables and the independent components have zero mean: If this is 
not true, then the observable variables xi can always be centered by subtracting the sample mean, which makes the 
model zero-mean. It is convenient to use vector-matrix notation instead of the sums like in the previous equation. 
Let us denote by x the random vector whose elements are the mixtures x1, ...,xn, and likewise by s the random vector 
with elementss1,.., sn. Let us denote by A the matrix with elements ai j.Generally, bold lower case letters indicate 
vectors and bold upper-case letters denote matrices. All vectors are understood as column vectors; thus xT , or the 
transpose of x, is a row vector. Using this vector-matrix notation, the above mixing model is written as 

                                                                    x = As.                                                                                  (13) 

                                                                                                                             

Sometimes we need the columns of matrix A; denoting them by aj the model can also be written as  
                           

                                                                      X=∑ 𝒂𝒊𝒔𝒊𝒏𝒊=𝟏                                                                                      (14) 

                                                                                                                                           

 The statistical model is called independent component analysis, or ICA model[6]-[9]. The ICA model is a 
generative model, which means that it describes how the observed data are generated by a process of mixing the 
components si. The independent components are latent variables, meaning that they cannot be directly observed. 
Also the mixing matrix is assumed to be unknown. All we observe is the random vector x, and we must estimate 
both A and s using it. This must be done under as general assumptions as possible. 
 
The starting point for ICA is the very simple assumption that the components si  are statistically independent.  It will 
be seen below that we must also assume that the independent component must have nongaussian distributions. 
However, in the basic model we do not assume these distributions known (if they are known, the problem is 
considerably simplified.) For simplicity, we are also assuming that the unknown mixing matrix is square, but this 
assumption can be sometimes relaxed. Then, after estimating the matrix A, we can compute its inverse, say W, and 
obtain the independent component simply by: 
 

                                                                               S = W x                                                                         (15) 
 

 

 

I.K mean 

 

 k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which 
each observation belongs to the cluster with the nearest mean. This result into a partitioning of the data space into 
Voroni  Cells. The problem is computationally difficult, however there are efficient heuristic algorithms that are 
commonly employed and converge fast to a local optimum. These are usually similar to the expectation-
maximization algorithm for  mixtures of Gaussian distributions via an iterative refinement approach employed by 
both algorithms.[10]-[11] Additionally, they both use cluster centers to model the data, however k-means clustering 
tends to find clusters of comparable spatial extent, while the expectation-maximization mechanism allows clusters to 
have different shapes 
. 



 

 

Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional real vector, k-means 
clustering aims to partition the n observations into k sets (k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-
cluster sum of squares    
 𝒂𝒓𝒈𝐦𝐢𝐧 𝒔 ∑ ∑ ‖𝑿𝒊 − 𝝁𝒊‖𝟐𝒙𝒋 𝝐𝒔𝒋

𝒌
𝒊=𝟏  

                                                                                                                                                                           (16) 

where μi is the mean of points in Si. 
The most common algorithm uses an iterative refinement technique. Due to its ubiquity it is often called the k-

means algorithm; it is also referred to as LIoyd’s algorithm, particularly in the computer science community. 
Given an initial set of k means m1

(1),…,mk
(1)  the algorithm proceeds by alternating between two steps: 

Assign each observation to the cluster with the closest mean 
 

                                                    𝑺𝒊(𝒕)={𝒙𝒑 ∶ ‖𝒙𝒑 − 𝒎𝒊(𝒕)‖ ≤ ‖𝒙𝒑 − 𝒎𝒊(𝒕)‖∀𝟏 ≤ 𝒋 ≤ 𝒌}                                        (17) 

                                                                                                                            

Where each 𝑥𝑃 goes into exactly one𝑠𝑡(𝑡)even if it could go in two of them. 

                                                                      𝒎𝒊(𝒕+𝟏)
= 

𝟏|𝑺𝒊(𝒕)|  ∑ 𝑿𝒋𝒙𝒋  𝝐  𝒔𝒊(𝒕)                                                                     (18) 

                                                                                                                    

 
The algorithm is deemed to have converged when the assignments no longer change. 
 
 
 

V. EXPERIMENTAL RESULTS: 

 

In this paper we have generated the noise with random sequence and that noise is added to reference image taken by 
single sensor camera. Our work has been implemented in Matlab graphical user interface. We have calculated 
different parameters like PSNR, WPSNR, SSIM and correlation coefficient to show the performance of our 
algorithm.The formulas used for calculation are shown below: 

 

Fig 1.Original image 



 

 

 

Fig 2. Noisy image 

 

Fig 3.Denoised image 

PSNR: The peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term for the ratio between the 
maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. 
Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of the logarithmic 
decibel scale.  

 

                                                           MSE = 1/mn ∑ ∑ [𝑰(𝒊, 𝒋) − 𝑲(𝒊, 𝒋)]𝟐𝒏−𝟏𝒋=𝟎𝒎−𝟏𝒊=𝟎                                                 (19) 

                                                                                                                             

The PSNR is defined as 

PSNR = 10·𝐥𝐨𝐠𝟏𝟎 (𝑴𝑨𝑿𝑰𝟐𝑴𝑺𝑬 ) 

 

 

                                                                                    = 20·𝐥𝐨𝐠𝟏𝟎(𝑴𝑨𝑿𝑰)-10·𝐥𝐨𝐠𝟏𝟎(𝑴𝑺𝑬)                                 (20) 

 

 
Weighted PSNR: Weighted peak signal to noise ratio (WPSNR) takes into account, the texture of the image and the 
fact that the human eye is less sensitive to changes in textured areas than in smooth areas. It is nothing but PSNR 
weighted by an HVS parameter called noise visibility function (NVF). 
 

                                                            WPSNR = 20·𝐥𝐨𝐠𝟏𝟎 ( 𝟐𝟓𝟓𝐍𝐕𝐅 × √𝐌𝐒𝐄)                                                                (21) 

                                                                                                                             

The formula to calculate this factor is:  



 

 

                                                                  NVF = NORM( 𝟏𝟏×𝛅𝐛𝐥𝐨𝐜𝐤𝟐)                                                                 (22) 

                                                                                                                                                                  

where δ block is the standard deviation of luminance of the block of pixels and NORM is the normalization function 
applied on each block of pixels to normalize the value of NVF in the range from zero to unity. High value of 
WPSNR indicates that the image is less distorted. 
 
SSIM:Structural similarity index matrix (SSIM) they process all the pixels equally, so they cannot reasonably reflect 
the Subjective feeling on different scenes based on human visual sensitivity (HVS). Thus, a more comprehensive 
image quality assessment can be made by considering HVS. The method here is based on structural distortion 
measurement instead of error measurement. The idea behind this is that the human vision system is highly 
specialized in extracting structural information from the viewing field and it is not specialized in extracting errors. 
The structural similarity index correlates with human visual system. Thus SSIM is used as a perceptual image 
quality evaluation metric. The SSIM is defined as function of luminance (l), contrast(c) and structural components(s) 
respectively [10].  

                                                             SSIM = l(x, y), c(x, y), s(x, y)                                                        (23) 

                                                                                                                                                                                 

Where, 
                                                       l (x, y) = 2μx μy+C1/μx2+ μy2+ C1                                                  (24) 

                                                                                                                             

                                                           c (x,y) = 2𝝈x σy+C2/ σx
2+ σy

2
+ C2                                                                                                 (25) 

                                                                                                                            

                                                            s(x, y) = 2𝝈xy+ C3/ 𝝈x 𝝈y+ C3                                                                     (26) 

                                                                                                                             

The mean and variance are denoted by μ and σ. The constants C1, C2 and C3 are included to avoid numerical 
instabilities in the ratios. The SSIM is calculated between two NxN neighbourhoods of original and denoised 
images. The overall perceptual similarity of an image is obtained by taking mean of SSIM (MSSIM) of several 
neighbourhoods.  
 
Correlation Coefficient:It is used to compare two images.  
 

                                                          r = 
∑ ∑ (𝐀𝐦𝐧−�̅�)(𝐁𝐦𝐧−�̅�)𝐧𝐦√(((∑ ∑ (𝐀𝐦𝐧−�̅�)𝟐𝐧𝐦 ))((∑ ∑ (𝐁𝐦𝐧−�̅�)𝟐𝐧𝐦 )))                                                     (27) 

                 

Where, �̅� = mean2(A), and  �̅�= mean2(B). 
 
The Correlation Coefficient has the value r=1 if the images are absolutely identical ,r=0 if they are completely 
uncorrelated and r=-1 if they are completely anti-correlated. 
The Table 1 shows the performance comparison of denoising algorithms based on estimated PSNR, WPSNR and 
SSIM  and Correlation Coefficient values of FAST ICA and PCA. The estimated values in Table 1 indicate that the 
independent component analysis technique is the most effective denoising method compared to PCA.  
 

 



 

 

 

Table1: PEROFRMANCE COMPARISION OF DENOISING ALGORITHMS 

 

Fig 4. Comparision of PSNR values of FASTICA and PCA denosing algorithm 

  

Fig 5. Comparision of SSIM values of FASTICA and PCA denosing algorithm 

 

  PCA FASTICA 

IMAGES ORIGNAL 

SNR 

PSNR CORR 

COEFF 

WPSNR SSIM PSNR CORR 

COEFF 

WPSNR SSIM 

1 26.6987 27.2961 0.9916 38.8532 0.7397 33.0141 0.99771 44.6329 0.8999 

2 26.7002 27.4057 0.9836 38.7727 0.7883 33.1462 0.9955 44.7029 0.9239 

3 26.6835 27.3481 0.9835 38.8753 0.5981 33.0279 0.9954 44.5311 0.8301 

4 26.7002 27.1891 0.9928 38.7607 0.7055 33.0410 0.9980 44.5141 0.8871 

5 26.6987 27.2166 0.9915 38.7856 0.8092 32.9141 0.9976 44.3741 0.9250 

6 26.6899 27.7531 0.9840 38.7846 0.8907 32.8258 0.9949 44.6122 0.9633 

7 26.6834 27.1938 0.9779 38.7634 0.9254 32.1453 0.9928 43.6400 0.9764 

8 26.7226 27.0580 0.9831 38.9210 0.6513 33.1550 0.9957 44.8423 0.8703 

9 26.6987 27.0928 0.9841 38.7111 0.9630 32.0107 0.9947 41.9592 0.9876 

10 26.6899 27.6035 0.9892 38.8047 0.9004 32.7465 0.9966 43.9275 0.9664 



 

 

 

 

Fig 4. Comparision of WPSNR values of FASTICA and PCA denosing algorithm 

VI. CONCLUSION: 
This paper presented a PCA and Fast ICA based CFA image denoising scheme for single-sensor digital camera 
imaging applications. To fully exploit the spatial and spectral correlations of the CFA sensor readings during the 
denoising process, the mosaic Samples from different color channels were localized by using a supporting window 
to constitute a vector variable, whose Statistics are calculated to find the PCA and ICA transform matrix. A 
synthetic noise is also generated so the algorithmic difference can be evaluated. Kmeans Clustering approach has 
been considered The denoising performance has been evaluated by PSNR, WPSNR and SSIM  and Correlation 
Coefficient values. In comparison with the other methods, the image denoised by ICA has good signal - to - noise 
ratio and structural similarity index is almost close to that of original image. Thus ICA method provides better 
quality image which is close to human perception. 
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